[] HooPay Wallet

SECURE DIGITAL PAYMENTS

Partner APl Documentation

Complete Integration Guide for Developers

API Version 1.0

Generated: February 16, 2026

Developer Support: developers@hoopaywallet.com

Website: https://hoopaywallet.com

[T] Table of Contents

1. Introduction

2. Authentication & Security

3. Environments

4. Pay User API

5. Collect From User API

6. Wallet Verification API

7. Refund API

8. Fee API

9. Merchant Wallet APIs
10. Transaction History APIs
11. Webhooks
12. Error Codes

13. Best Practices

1. Introduction

Welcome to the HooPay Partner APl documentation. This guide provides comprehensive information for

integrating your platform with HooPay Wallet services.

What You Can Do

Pay User - Partner pays money to user wallets (credit funds)

Collect From User - Partner collects money from user wallets (debit funds)

Wallet Verification - Verify wallet ownership before transactions

Refunds - Process refunds for previous transactions

Fee Calculation - Get real-time fee estimates

Merchant Wallet Monitoring - Check balances, view ledgers, track activity

Transaction History - Access unified transaction reports and analytics

[[] Getting Started

Contact our partner team at

developers@hoopaywallet.com

to obtain your API credentials.

2. Authentication & Security

API Credentials

Each partner receives two credentials:

Credential Description Usage
API Key Public identifier Sentin x-API-key header
API Secret Private signing key Used to generate HMAC signature (never sent)

Required Headers

Header Description

X-API-Key Your partner APl key

X-Signature HMAC-SHA256 signature of the request body
X-Timestamp Unix timestamp (must be within 5 minutes)
X-Idempotency-Key Unique request ID (for POST requests)
Content-Type application/json

Accept application/json

HMAC Signature Generation
Generate the signature by creating an HMAC-SHA256 hash of the JSON request body using your API Secret:

PHP EXAMPLE

$body = json_encode($requestData);

$signature = hash_hmac('sha256', $body, $apiSecret);

JAVASCRIPT EXAMPLE

const crypto = require('crypto');

const body = JSON.stringify(requestData);

const signature = crypto.createHmac('sha256', apiSecret)

.update(body)
.digest('hex');

PYTHON EXAMPLE

import hmac
import hashlib

import json

body = json.dumps(request data, separators=(',', ':'))

signature = hmac.new(
api_secret.encode(),
body.encode(),
hashlib.sha256

) .hexdigest()

3. Environments

Environment Base URL Purpose

https://hoopaywallet.co

Sandbox , Testing & development (use sandbox API keys)
m/api/vl/partner

https://hoopaywallet.co

Production) Live transactions (use production API keys)
m/api/vl/partner

(1] Sandbox Testing

Use sandbox credentials to test your integration without affecting real user wallets. Test wallet IDs: 123456 , 234567 ,

345678

4. Pay User API

Partner pays money to a HooPay user's wallet. Use this for payouts, rewards, refunds, and fund transfers

from your platform to user wallets.

POST
/partner/pay-user

REQUEST PARAMETERS

Parameter

user wallet id

amount

currency

reference id

description

metadata

EXAMPLE REQUEST

POST /api/vl/partner/pay-user HTTP/1.1

Host: hoopaywallet.com

X-API-Key: hpk prod XXXXXXXXXXXX
X-Signature: alb2c3d4e5f6. ..

Content-Type: application/json

"reference id": "PAY-2024-001234",
"user wallet id": "123456",
"amount": "100.00",

"currency":

"description":

Type

string

string

string

string

string

object

"Trading payout from FXPrimus"

SUCCESS RESPONSE (201 CREATED)

"success": true,

"data": {

"deposit id":

"reference id":

"status"

"amount":
"fee amount":

"net_amount":

"dep _abcl23xyz",
"PAY-2024-001234",

"pending settlement",

Description

6-digit HooPay wallet ID

Amaouirddto pay user (as string, e.g., "100.00")

Currency code (default: USD)

Yeefuiraigue transaction reference

Transaction description

Custiomlkey-value pairs

“currency": "USD",
"user wallet id": "123456",
"created at": -12-01T15:30:002"

Deposit Statuses

Status Description

pending_settlement Deposit created, awaiting merchant wallet debit and user wallet credit

Merchant wallet has insufficient funds. Deposit queued and will auto-
pending funding

process when merchant tops up

processing Settlement in progress

completed Successfully credited to user wallet
failed Settlement failed (see failure_reason)
cancelled Deposit cancelled before settlement

([Auto-Reconciliation

Deposits with status pending funding are automatically processed when the merchant wallet is topped up. No

manual intervention required.

5. Collect From User API

Partner collects money from a HooPay user's wallet. Requires user authorization via redirect flow. Use this

when users need to fund their account on your platform.

A Authorization Required

Collecting from users requires explicit user authorization. The user will be redirected to HooPay to confirm the

transaction.

Step 1: Initiate Collection

FOST /partner/collect-from-user

REQUEST PARAMETERS

Parameter Type
user_wallet_id string
amount string
reference_id string
callback url string
description string

SUCCESS RESPONSE

"success": true,

"data": {
"withdrawal id": "wth xyz789abc",
"reference_id": "COLLECT-2024-005678",

"status": "pending authorization",

"amount": "500.00",

Description

6-digit HooPay wallet ID

Amaouirddto collect (as string, e.g., "500.00")

Your unique transaction reference

URdadededirect after authorization

Transaction description

"authorization_ url": "https://hoopaywallet.com/authorize/wth xyz789abc",

"expires_at": "2024-12-01T16:00:00Z"

Step 2: User Authorization

Redirect the user to the authorization url . The user will:

1. Log in to HooPay (if not already logged in)
2. Review the collection details
3. Enter their PIN to confirm

4. Be redirected to your callback url

Step 3: Handle Callback

Your callback URL will receive query parameters:

https://yourplatform.com/callback?

withdrawal id=wth xyz789abc&

status=completed&
reference_1id=COLLECT-2024-005678

Check Collection Status

o) /partner/collect-from-user/{reference}

6. Wallet Verification API

Verify a wallet ID and retrieve masked user information before initiating transactions.

i /partner/wallets/{wallet id}/verify

SUCCESS RESPONSE

"success": true,
"data": {
"wallet_id": "123456",
"verified": true,
"user": {
"name_masked": "J¥** Dxx",
"email _masked": "j***@*** com",
"phone_masked": "+1***456",
"kyc_verified": true,
"account_status": "active"
e
"limits": {

"can_receive deposits": true,

"can_withdraw": true,

"daily limit remaining": 9500.00,
"monthly limit remaining": 95000.00

0 Best Practice

Always verify the wallet before paying a user to ensure the user exists and can receive funds.

7. Refund API

Reverse a previous deposit or withdrawal transaction.

POST /partner/refunds

REQUEST PARAMETERS

Parameter Type Description

type String pay-user OI collect-from-user
original_transaction_id string IBeofueiginal transaction

amount number Partial refund amount (full if omitted)
reason string Resgsoredor refund

EXAMPLE REQUEST

"type": "pay-user",

"original_transaction id": "pay abcl23xyz",

"reason": "Customer requested cancellation"

8. Fee API

Calculate transaction fees before processing.

Get Fee Schedule

e /partner/fees

RESPONSE

"success": true,
"data": {

"deposit": {
"percentage":
"min": null,
"max": null

1

"withdrawal": {
"percentage":
"min": 0.50,
"max": 50.00

Calculate Fee

FOST /partner/fees/calculate

REQUEST

"type": "withdrawal",
"amount": 500.00,

"currency": "USD"

RESPONSE

"success": true,

"data": {
"amount": 500.00,
"fee amount": 7.50,
"net_amount": 492.50,

"fee breakdown": {

"percentage rate": 1.50

9. Merchant Wallet APIs

Monitor your settlement account balances, view transaction ledgers, and track merchant wallet activity.

[[] Account Monitoring

Use these APIs to check your balance before initiating payouts, set up automated alerts for low balances, and

access transaction ledgers for reconciliation.

9.1 List All Merchant Wallets

GET /merchant-wallets

Retrieve all your merchant wallets across different currencies with current balances.

RESPONSE EXAMPLE

"success": true,
"data": {
"wallets": [
{
"id": 1,

"currency": "USD",

"balance": 15250.75,
"formatted balance": "15,250.75 USD",

"status": "active",
"is_low balance": false,
"low_balance threshold": 1000.00

1,

"summary": {
"total wallets": 2,
"active wallets": 2,

"currencies": ["USD", "EUR"]

9.2 Get Wallet Balance

A= /merchant-wallets/{currency}/balance

Lightweight endpoint to quickly check your current balance. Perfect for balance checks before initiating

payouts.

9.3 Get Wallet Details

ET
2 /merchant-wallets/{currency}

Get detailed information including 24-hour activity statistics (credits, debits, transaction counts).

9.4 Get Transaction Ledger

GET /merchant-wallets/{currency}/ledger

Access your complete transaction ledger for reconciliation and audit purposes.

QUERY PARAMETERS

Parameter Type Description

type string Filter: credit, debit, all (default: all)
from date date Start date (YYYY-MM-DD)

to_date date End date (YYYY-MM-DD)

per_page integer Results per page (1-100, default: 20)
Use Cases:

e Pre-Payout Check:
Verify sufficient balance before batch payouts
« Daily Reconciliation:
Download ledger entries and match with internal records
e Low Balance Alerts:
Monitor is_low_balance field for automated alerts
e Monthly Reporting:

Generate settlement reports with ledger data

10. Transaction History APIs

Access unified transaction history across all deposits and withdrawals. Perfect for reporting, analytics, and

monitoring.

(1] Unified View

10.1 List Transactions

GET

/transactions

These APIs provide a consolidated view of all your partner transactions, combining both deposits (Pay User) and

withdrawals (Collect From User) into a single, sortable feed.

Retrieve a paginated list of all your transactions with powerful filtering options.

QUERY PARAMETERS

Parameter

type

status

user wallet id

from date

to_date

per_page

RESPONSE EXAMPLE

Type

string

string

string

date

date

integer

Description

Filter: deposit, withdrawal, all (default: all)

Filter by status (completed, pending, failed)

Filter by user wallet ID (6-digit)

Start date (YYYY-MM-DD)

End date (YYYY-MM-DD)

Results per page (1-100, default: 20)

"success": true,
"data": [
{

"type": "deposit",
"id": "dep_abc123",
"reference id": "ORDER-001",
"amount": 50.00,
"currency": "USD",
"status": "completed",
"user _wallet_id": "310146",
"created_at": 25-01-28T10:30:00Z"

"type": "withdrawal",

"id": "pwd_xyz789",
"reference_id": "WITHDRAWAL-456",
"amount": 100.00,

"fee amount": 2.50,

“net_amount": 97.50,

“currency": "USD",

"status": "completed",

"user _wallet_id": "123456",
“created at" 25-01-28T09:15

1,

"meta": {
“current_page": 1,
"total": 95,

"per_page": 20

10.2 Get Transaction Summary

GET .
/transactions/summary

Get aggregated statistics about your transactions including counts, totals, and fees.

RESPONSE EXAMPLE

"success": true,
"data": {

"deposits": {
“count": 150,
"total_amount": 15000.600,

"pending count": 5

1

"withdrawals": {
“count": 85,
"total_amount": 8500.00,
“total fees": 212.50,
"pending count": 2

I

"totals": {
“transaction_count": 235,
"volume": 23500.00,
"fees_collected": 212.50

Common Use Cases:

e Internal Dashboards:

Build real-time transaction activity dashboards

e Monthly Reports:

Generate settlement reports for accounting
o User Activity Tracking:

Monitor transactions for specific users
o Failed Transaction Monitoring:

Identify and investigate failures

11. Webhooks

Receive real-time notifications for transaction status changes.

Webhook Events

Event Description

deposit.completed Pay User transaction successfully completed

Deposit queued due to insufficient merchant wallet balance. Will auto-
deposit.pending funding

process when merchant tops up.

deposit.completed after funding Queued deposit completed after merchant wallet was topped up
deposit.failed Pay User transaction failed

withdrawal.authorized User authorized the collection

withdrawal.completed Collect From User transaction successfully completed
withdrawal.failed Collect From User transaction failed

withdrawal.cancelled Collection cancelled by user

refund.completed Refund successfully processed

Webhook Payload

POST /your-webhook-endpoint HTTP/1.1
X-Webhook-Signature: sha256=abc123...
Content-Type: application/json

"event": "withdrawal.completed",
"timestamp": "2024-12-01T15:30:00Z",
"data": {

"withdrawal id": "wth_ xyz789abc",
"reference_id": "COLLECT-2024-005678",
"status": "completed",

“amount": "500.00",

"fee_amount": "7.75",

"net_amount": "492.25",
"user_wallet id": "123456"

Verifying Webhook Signatures

// PHP
$payload = file get contents('php://input');
$signature = $ SERVER['HTTP X WEBHOOK SIGNATURE'];

$expected = 'sha256=' . hash_hmac('sha256', $payload, $webhookSecret);

if (!'hash_equals($expected, $signature)) {
http_response code(401);

exit('Invalid signature');

12. Error Codes

HTTP Status Codes

Code

200

201

400

401

403

404

409

422

429

500

Error Response Format

"success": false,

"error": {

"code": "INVALID WALLET",

Meaning

Success

Created

Bad Request - Invalid parameters

Unauthorized - Invalid credentials

Forbidden - Insufficient permissions

Not Found - Resource doesn't exist

Conflict - Duplicate request

Unprocessable - Validation failed

Too Many Requests - Rate limited

Server Error

"message": "The specified wallet ID does not exist"

Common Error Codes

Code Description Solution

Invalid APl key or

UNAUTHORIZED Check credentials and signature
signature

INVALID_WALLET Wallet not found Verify wallet ID format (6 digits)

INSUFFICIENT BALANCE User lacks funds Request smaller amount

Transaction limit
LIMIT_EXCEEDED Check daily/monthly limits
reached

Reference ID
DUPLICATE REFERENCE Use unique reference
already used

RATE LIMITED Too many requests Wait and retry with backoff

13. Best Practices

(1] Security

e Store API credentials securely (use environment variables)
e Always use HTTPS in production

e Validate all webhook signatures

e Implement IP whitelisting if possible

e Rotate API keys periodically

([0 Idempotency

e Always include x-idempotency-key for POST requests
e Use unique, deterministic keys (e.9., order 123 deposit)

e Safe to retry requests with the same idempotency key

s Performance

Implement exponential backoff for retries

Cache fee schedules (refresh hourly)

Use webhooks instead of polling for status updates

Batch operations where possible

1] Testing

e Start with sandbox environment
e Test all error scenarios
e Verify webhook handling

e Test with various amounts and currencies

(1] Monitoring

Log all API requests and responses

Monitor for failed transactions

Set up alerts for high error rates

Track webhook delivery success

HooPay Wallet - Partner APl Documentation
Version 1.0 | February 16, 2026

(1] Developer Support: developers@hoopaywallet.com

© 2026 HooPay Wallet. All rights reserved.

