
�� HooPay Wallet
SECURE DIGITAL PAYMENTS

Partner API Documentation
Complete Integration Guide for Developers

API Version 1.0

Generated: February 16, 2026

Developer Support: developers@hoopaywallet.com

Website: https://hoopaywallet.com

�� Table of Contents

1. Introduction

2. Authentication & Security

3. Environments

4. Pay User API

5. Collect From User API

6. Wallet Verification API

7. Refund API

8. Fee API

9. Merchant Wallet APIs

10. Transaction History APIs

11. Webhooks

12. Error Codes

13. Best Practices

1. Introduction

Welcome to the HooPay Partner API documentation. This guide provides comprehensive information for
integrating your platform with HooPay Wallet services.

What You Can Do

Pay User – Partner pays money to user wallets (credit funds)

Collect From User – Partner collects money from user wallets (debit funds)

Wallet Verification – Verify wallet ownership before transactions

Refunds – Process refunds for previous transactions

Fee Calculation – Get real-time fee estimates

Merchant Wallet Monitoring – Check balances, view ledgers, track activity

Transaction History – Access unified transaction reports and analytics

�� Getting Started

Contact our partner team at
developers@hoopaywallet.com

to obtain your API credentials.

2. Authentication & Security

API Credentials

Each partner receives two credentials:

Credential Description Usage

API Key Public identifier Sent in X-API-Key header

API Secret Private signing key Used to generate HMAC signature (never sent)

Required Headers

Header Description

X-API-Key Your partner API key

X-Signature HMAC-SHA256 signature of the request body

X-Timestamp Unix timestamp (must be within 5 minutes)

X-Idempotency-Key Unique request ID (for POST requests)

Content-Type application/json

Accept application/json

HMAC Signature Generation

Generate the signature by creating an HMAC-SHA256 hash of the JSON request body using your API Secret:

PHP EXAMPLE

$body = json_encode($requestData);

$signature = hash_hmac('sha256', $body, $apiSecret);

JAVASCRIPT EXAMPLE

const crypto = require('crypto');

const body = JSON.stringify(requestData);

const signature = crypto.createHmac('sha256', apiSecret)

 .update(body)

 .digest('hex');

PYTHON EXAMPLE

import hmac

import hashlib

import json

body = json.dumps(request_data, separators=(',', ':'))

signature = hmac.new(

 api_secret.encode(),

 body.encode(),

 hashlib.sha256

).hexdigest()

3. Environments

Environment Base URL Purpose

Sandbox
https://hoopaywallet.co

m/api/v1/partner
Testing & development (use sandbox API keys)

Production
https://hoopaywallet.co

m/api/v1/partner
Live transactions (use production API keys)

�� Sandbox Testing

Use sandbox credentials to test your integration without affecting real user wallets. Test wallet IDs: 123456 , 234567 ,
345678

4. Pay User API

Partner pays money to a HooPay user's wallet. Use this for payouts, rewards, refunds, and fund transfers
from your platform to user wallets.

POST /partner/pay-user

REQUEST PARAMETERS

Parameter Type

R

e

q

u

i

r

e

d

Description

user_wallet_id string Required6-digit HooPay wallet ID

amount string RequiredAmount to pay user (as string, e.g., "100.00")

currency string OptionalCurrency code (default: USD)

reference_id string RequiredYour unique transaction reference

description string OptionalTransaction description

metadata object OptionalCustom key-value pairs

EXAMPLE REQUEST

POST /api/v1/partner/pay-user HTTP/1.1

Host: hoopaywallet.com

X-API-Key: hpk_prod_xxxxxxxxxxxx

X-Signature: a1b2c3d4e5f6...

Content-Type: application/json

{

 "reference_id": "PAY-2024-001234",

 "user_wallet_id": "123456",

 "amount": "100.00",

 "currency": "USD",

 "description": "Trading payout from FXPrimus"

}

SUCCESS RESPONSE (201 CREATED)

{

 "success": true,

 "data": {

 "deposit_id": "dep_abc123xyz",

 "reference_id": "PAY-2024-001234",

 "status": "pending_settlement",

 "amount": "100.00",

 "fee_amount": "0.00",

 "net_amount": "100.00",

 "currency": "USD",

 "user_wallet_id": "123456",

 "created_at": "2024-12-01T15:30:00Z"

 }

}

Deposit Statuses

Status Description

pending_settlement Deposit created, awaiting merchant wallet debit and user wallet credit

pending_funding
Merchant wallet has insufficient funds. Deposit queued and will auto-
process when merchant tops up

processing Settlement in progress

completed Successfully credited to user wallet

failed Settlement failed (see failure_reason)

cancelled Deposit cancelled before settlement

�� Auto-Reconciliation

Deposits with status pending_funding are automatically processed when the merchant wallet is topped up. No
manual intervention required.

5. Collect From User API

Partner collects money from a HooPay user's wallet. Requires user authorization via redirect flow. Use this
when users need to fund their account on your platform.

⚠️ Authorization Required

Collecting from users requires explicit user authorization. The user will be redirected to HooPay to confirm the
transaction.

Step 1: Initiate Collection

POST /partner/collect-from-user

REQUEST PARAMETERS

Parameter Type

R

e

q

u

i

r

e

d

Description

user_wallet_id string Required6-digit HooPay wallet ID

amount string RequiredAmount to collect (as string, e.g., "500.00")

reference_id string RequiredYour unique transaction reference

callback_url string RequiredURL to redirect after authorization

description string OptionalTransaction description

SUCCESS RESPONSE

{

 "success": true,

 "data": {

 "withdrawal_id": "wth_xyz789abc",

 "reference_id": "COLLECT-2024-005678",

 "status": "pending_authorization",

 "amount": "500.00",

 "authorization_url": "https://hoopaywallet.com/authorize/wth_xyz789abc",

 "expires_at": "2024-12-01T16:00:00Z"

 }

}

Step 2: User Authorization

Redirect the user to the authorization_url . The user will:

1. Log in to HooPay (if not already logged in)

2. Review the collection details

3. Enter their PIN to confirm

4. Be redirected to your callback_url

Step 3: Handle Callback

Your callback URL will receive query parameters:

https://yourplatform.com/callback?

 withdrawal_id=wth_xyz789abc&

 status=completed&

 reference_id=COLLECT-2024-005678

Check Collection Status

GET /partner/collect-from-user/{reference}

6. Wallet Verification API

Verify a wallet ID and retrieve masked user information before initiating transactions.

GET /partner/wallets/{wallet_id}/verify

SUCCESS RESPONSE

{

 "success": true,

 "data": {

 "wallet_id": "123456",

 "verified": true,

 "user": {

 "name_masked": "J*** D**",

 "email_masked": "j***@***.com",

 "phone_masked": "+1***456",

 "kyc_verified": true,

 "account_status": "active"

 },

 "limits": {

 "can_receive_deposits": true,

 "can_withdraw": true,

 "daily_limit_remaining": 9500.00,

 "monthly_limit_remaining": 95000.00

 }

 }

}

✅ Best Practice

Always verify the wallet before paying a user to ensure the user exists and can receive funds.

7. Refund API

Reverse a previous deposit or withdrawal transaction.

POST /partner/refunds

REQUEST PARAMETERS

Parameter Type

R

e

q

u

i

r

e

d

Description

type string Requiredpay-user or collect-from-user

original_transaction_id string RequiredID of original transaction

amount number OptionalPartial refund amount (full if omitted)

reason string RequiredReason for refund

EXAMPLE REQUEST

{

 "type": "pay-user",

 "original_transaction_id": "pay_abc123xyz",

 "reason": "Customer requested cancellation"

}

8. Fee API

Calculate transaction fees before processing.

Get Fee Schedule

GET /partner/fees

RESPONSE

{

 "success": true,

 "data": {

 "deposit": {

 "percentage": 0.00,

 "min": null,

 "max": null

 },

 "withdrawal": {

 "percentage": 1.50,

 "min": 0.50,

 "max": 50.00

 }

 }

}

Calculate Fee

POST /partner/fees/calculate

REQUEST

{

 "type": "withdrawal",

 "amount": 500.00,

 "currency": "USD"

}

RESPONSE

{

 "success": true,

 "data": {

 "amount": 500.00,

 "fee_amount": 7.50,

 "net_amount": 492.50,

 "fee_breakdown": {

 "percentage_rate": 1.50

 }

 }

}

9. Merchant Wallet APIs

Monitor your settlement account balances, view transaction ledgers, and track merchant wallet activity.

�� Account Monitoring

Use these APIs to check your balance before initiating payouts, set up automated alerts for low balances, and
access transaction ledgers for reconciliation.

9.1 List All Merchant Wallets

GET /merchant-wallets

Retrieve all your merchant wallets across different currencies with current balances.

RESPONSE EXAMPLE

{

 "success": true,

 "data": {

 "wallets": [

 {

 "id": 1,

 "currency": "USD",

 "balance": 15250.75,

 "formatted_balance": "15,250.75 USD",

 "status": "active",

 "is_low_balance": false,

 "low_balance_threshold": 1000.00

 }

],

 "summary": {

 "total_wallets": 2,

 "active_wallets": 2,

 "currencies": ["USD", "EUR"]

 }

 }

}

9.2 Get Wallet Balance

GET /merchant-wallets/{currency}/balance

Lightweight endpoint to quickly check your current balance. Perfect for balance checks before initiating
payouts.

9.3 Get Wallet Details

GET /merchant-wallets/{currency}

Get detailed information including 24-hour activity statistics (credits, debits, transaction counts).

9.4 Get Transaction Ledger

GET /merchant-wallets/{currency}/ledger

Access your complete transaction ledger for reconciliation and audit purposes.

QUERY PARAMETERS

Parameter Type Description

type string Filter: credit, debit, all (default: all)

from_date date Start date (YYYY-MM-DD)

to_date date End date (YYYY-MM-DD)

per_page integer Results per page (1-100, default: 20)

Use Cases:

Pre-Payout Check:

Verify sufficient balance before batch payouts

Daily Reconciliation:

Download ledger entries and match with internal records

Low Balance Alerts:

Monitor is_low_balance field for automated alerts

Monthly Reporting:

Generate settlement reports with ledger data

10. Transaction History APIs

Access unified transaction history across all deposits and withdrawals. Perfect for reporting, analytics, and
monitoring.

�� Unified View

These APIs provide a consolidated view of all your partner transactions, combining both deposits (Pay User) and
withdrawals (Collect From User) into a single, sortable feed.

10.1 List Transactions

GET /transactions

Retrieve a paginated list of all your transactions with powerful filtering options.

QUERY PARAMETERS

Parameter Type Description

type string Filter: deposit, withdrawal, all (default: all)

status string Filter by status (completed, pending, failed)

user_wallet_id string Filter by user wallet ID (6-digit)

from_date date Start date (YYYY-MM-DD)

to_date date End date (YYYY-MM-DD)

per_page integer Results per page (1-100, default: 20)

RESPONSE EXAMPLE

{

 "success": true,

 "data": [

 {

 "type": "deposit",

 "id": "dep_abc123",

 "reference_id": "ORDER-001",

 "amount": 50.00,

 "currency": "USD",

 "status": "completed",

 "user_wallet_id": "310146",

 "created_at": "2025-01-28T10:30:00Z"

 },

 {

 "type": "withdrawal",

 "id": "pwd_xyz789",

 "reference_id": "WITHDRAWAL-456",

 "amount": 100.00,

 "fee_amount": 2.50,

 "net_amount": 97.50,

 "currency": "USD",

 "status": "completed",

 "user_wallet_id": "123456",

 "created_at": "2025-01-28T09:15:00Z"

 }

],

 "meta": {

 "current_page": 1,

 "total": 95,

 "per_page": 20

 }

}

10.2 Get Transaction Summary

GET /transactions/summary

Get aggregated statistics about your transactions including counts, totals, and fees.

RESPONSE EXAMPLE

{

 "success": true,

 "data": {

 "deposits": {

 "count": 150,

 "total_amount": 15000.00,

 "pending_count": 5

 },

 "withdrawals": {

 "count": 85,

 "total_amount": 8500.00,

 "total_fees": 212.50,

 "pending_count": 2

 },

 "totals": {

 "transaction_count": 235,

 "volume": 23500.00,

 "fees_collected": 212.50

 }

 }

}

Common Use Cases:

Internal Dashboards:

Build real-time transaction activity dashboards

Monthly Reports:

Generate settlement reports for accounting

User Activity Tracking:

Monitor transactions for specific users

Failed Transaction Monitoring:

Identify and investigate failures

11. Webhooks

Receive real-time notifications for transaction status changes.

Webhook Events

Event Description

deposit.completed Pay User transaction successfully completed

deposit.pending_funding
Deposit queued due to insufficient merchant wallet balance. Will auto-
process when merchant tops up.

deposit.completed_after_funding Queued deposit completed after merchant wallet was topped up

deposit.failed Pay User transaction failed

withdrawal.authorized User authorized the collection

withdrawal.completed Collect From User transaction successfully completed

withdrawal.failed Collect From User transaction failed

withdrawal.cancelled Collection cancelled by user

refund.completed Refund successfully processed

Webhook Payload

POST /your-webhook-endpoint HTTP/1.1

X-Webhook-Signature: sha256=abc123...

Content-Type: application/json

{

 "event": "withdrawal.completed",

 "timestamp": "2024-12-01T15:30:00Z",

 "data": {

 "withdrawal_id": "wth_xyz789abc",

 "reference_id": "COLLECT-2024-005678",

 "status": "completed",

 "amount": "500.00",

 "fee_amount": "7.75",

 "net_amount": "492.25",

 "user_wallet_id": "123456"

 }

}

Verifying Webhook Signatures

// PHP

$payload = file_get_contents('php://input');

$signature = $_SERVER['HTTP_X_WEBHOOK_SIGNATURE'];

$expected = 'sha256=' . hash_hmac('sha256', $payload, $webhookSecret);

if (!hash_equals($expected, $signature)) {

 http_response_code(401);

 exit('Invalid signature');

}

12. Error Codes

HTTP Status Codes

Code Meaning

200 Success

201 Created

400 Bad Request - Invalid parameters

401 Unauthorized - Invalid credentials

403 Forbidden - Insufficient permissions

404 Not Found - Resource doesn't exist

409 Conflict - Duplicate request

422 Unprocessable - Validation failed

429 Too Many Requests - Rate limited

500 Server Error

Error Response Format

{

 "success": false,

 "error": {

 "code": "INVALID_WALLET",

 "message": "The specified wallet ID does not exist"

 }

}

Common Error Codes

Code Description Solution

UNAUTHORIZED
Invalid API key or
signature

Check credentials and signature

INVALID_WALLET Wallet not found Verify wallet ID format (6 digits)

INSUFFICIENT_BALANCE User lacks funds Request smaller amount

LIMIT_EXCEEDED
Transaction limit
reached

Check daily/monthly limits

DUPLICATE_REFERENCE
Reference ID
already used

Use unique reference

RATE_LIMITED Too many requests Wait and retry with backoff

13. Best Practices

�� Security

Store API credentials securely (use environment variables)

Always use HTTPS in production

Validate all webhook signatures

Implement IP whitelisting if possible

Rotate API keys periodically

�� Idempotency

Always include X-Idempotency-Key for POST requests

Use unique, deterministic keys (e.g., order_123_deposit)

Safe to retry requests with the same idempotency key

⚡ Performance

Implement exponential backoff for retries

Cache fee schedules (refresh hourly)

Use webhooks instead of polling for status updates

Batch operations where possible

�� Testing

Start with sandbox environment

Test all error scenarios

Verify webhook handling

Test with various amounts and currencies

�� Monitoring

Log all API requests and responses

Monitor for failed transactions

Set up alerts for high error rates

Track webhook delivery success

HooPay Wallet – Partner API Documentation

Version 1.0 | February 16, 2026

�� Developer Support: developers@hoopaywallet.com

© 2026 HooPay Wallet. All rights reserved.

